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An Introduction to Resolvent kernels

for Dirichlet BVPs on Finite Networks

A. Carmona and A.M. Encinas

We aim here at introducing the basic terminology and results on the Resolvent

Kernels associated with the Dirichlet BVP on finite networks. Firstly, we define

the discrete analogue of the Green and Poisson Kernels and we established its

main properties and relation. Then, we define the Dirichlet to Neumann map

and study its relation with the Poisson and Green kernels.

1. Preliminares

Throughout the paper, Γ = (V,E) denotes a simple, finite and connected graph without loops, with
vertex set V and edge set E. Two different vertices, x, y ∈ V , are called adjacent, which will be represented
by x ∼ y, if {x, y} ∈ E.

Given a vertex subset F ⊂ V , we denote by F c its complementary in V and we call boundary and
closure of F , the sets δ(F ) = {x ∈ V : x ∼ y for some y ∈ F} and F̄ = F ∪ δ(F ), respectively. If F ⊂ V
is a proper subset, we say that F is connected if for any x, y ∈ V there exists a path joined x and y whose
vertices are all in F . It is easy to prove that F̄ is connected when F is.

The sets of functions and non-negative functions on V are denoted by C(V ) and C+(V ) respectively.
If u ∈ C(V ), its support is given by supp(u) = {x ∈ V : u(x) 6= 0}. Moreover, if x ∈ V , we denote by
εy the Dirac function; that is, εy(x) = 0 if x 6= y and εy(y) = 1. If F is a non empty subset of V , its
characteristic function is denoted by χ

F
and we can consider the sets C(F ) = {u ∈ C(V ) : supp(u) ⊂ F} and

C+(F ) = C(F ) ∩ C+(V ). We call weight on F any function σ ∈ C+(F ) such that supp(σ) = F . The set of
weights on F is denoted by Ω(F ).

We call conductance on Γ a function c : V ×V −→ IR+ such that c(x, y) > 0 iff x ∼ y. We call weighted
network any triple (Γ, c, ν), where c is a conductance on Γ and ν ∈ Ω(V ). In what follows we consider fixed

the network (Γ, c, ν) and we refer to it simply by Γ. The function κ ∈ C+(V ) defined as κ(x) =

∫
V

c(x, y) dy

for any x ∈ V is called the degree of Γ that clearly satisfies that supp(κ) = V . In addition, for any proper

subset F ⊂ V we call the boundary degree of F the function κ
F
∈ C
(
δ(F )

)
defined as κ

F
(x) =

∫
F

c(x, y) dy

for any x ∈ δ(F ), that clearly satisfies that supp(κ
F

) = δ(F ).

The combinatorial Laplacian or simply the Laplacian of Γ is the linear operator L : C(V ) −→ C(V )
that assigns to each u ∈ C(V ) the function

(1) L(u)(x) =
1

ν(x)

∫
V

c(x, y)
(
u(x)− u(y)

)
dy, x ∈ V.
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Given q ∈ C(V ) the Schrödinger operator on Γ with potential q is the linear operator Lq : C(V ) −→ C(V )
that assigns to each u ∈ C(V ) the function Lq(u) = L(u) + qu.

If F is a proper subset of V , for each u ∈ C(F̄ ) we define the normal derivative of u on F as the
function in C(δ(F )) given by

(2)

(
∂u

∂n
F

)
(x) =

1

ν(x)

∫
F

c(x, y)
(
u(x)− u(y)

)
dy, for any x ∈ δ(F ).

The normal derivative on F is the operator
∂

∂n
F

: C(F̄ ) −→ C(δ(F )) that to any u ∈ C(F̄ ) assigns its

normal derivative on F .

The relation between the values of the Schrödinger operator with potential q on F and the values of
the normal derivative at δ(F ) is given by the First Green Identity.∫

F

vLq(u) dν =
1

2

∫
F̄

∫
F̄

c
F

(x, y)(u(x)− u(y))(v(x)− v(y)) dxdy +

∫
F

quv dν −
∫
δ(F )

v
∂u

∂n
F

dν,

where u, v ∈ C(F̄ ) and c
F

= c · χ
(F̄×F̄ )\(δ(F )×δ(F ))

. A direct consequence of the above identity is the so–called
Second Green Identity∫

F

(
vLq(u)− uLq(v)

)
dν =

∫
δ(F )

(
u
∂v

∂n
F

− v ∂u

∂n
F

)
dν, for all u, v ∈ C(F̄ ).

In the sequel we consider a connected proper subset F ⊂ V . Given functions q ∈ C(F ), f ∈ C(F ),
h ∈ C(δ(F )) a Dirichlet boundary value problem on F consists in finding u ∈ C(F̄ ) such that

(3) Lq(u) = f on F and u = h on δ(F ).

The quadratic form associated with the boundary value problem (3) is the function Q : C(F̄ ) −→ IR
given by

(4) Q(u) =
1

2

∫
F̄×F̄

c
F

(x, y)
(
u(x)− u(y)

)2
dxdy +

∫
F

q u2dν.

Next we obtain a sufficient condition guaranteeing that Q is positive definite. To do this we consider
σ ∈ Ω(F̄ ) and the following identity for each u ∈ C(V ) and any x, y ∈ F̄

(5)
(
u(x)− u(y)

)2
= σ(x)σ(y)

(
u(x)

σ(x)
− u(y)

σ(y)

)2

+
u2(x)

σ(x)

(
σ(x)− σ(y)

)
− u2(y)

σ(y)

(
σ(x)− σ(y)

)
.

Using the above identity, usually called Doob transform, we get that for each u ∈ C(V )

(6) Q(u) =
1

2

∫
F̄×F̄

c
F

(x, y)σ(x)σ(y)

(
u(x)

σ(x)
− u(y)

σ(y)

)2

dxdy +

∫
F

(q − qσ)u2dν +

∫
δ(F )

1

σ

∂σ

∂n
F

u2 dν.

where qσ(x) = −σ−1L(σ)(x) for all x ∈ F .

Proposition 1.1 ([2], Proposition 4). Given q ∈ C(F ), Q is positive definite on C(F ) if there exists a weight

σ ∈ Ω(F̄ ) such that q ≥ qσ on F . If in addition
∂σ

∂n
F

≥ 0 on δ(F ), then Q is positive semi–definite on C(F̄ )

and positive definite when either q 6= qσ on F or
∂σ

∂n
F

6= 0 on δ(F ).

From now on we will suppose that there exists a weight σ ∈ Ω(F̄ ) such that q ≥ qσ on F . This
hypothesis implies that Problem (3) has a unique solution for any data.
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2. Monotonicity and Condenser Principle

Our aim in this section is to establish the monotonicity property of the Schrödinger operators that
was proved in [2, Proposition 4.10].

Proposition 2.1 (Monotonicity). If u ∈ C(F̄ ) verifies that Lq(u) ≥ 0 on F and u ≥ 0 on δ(F ), then either
u > 0 on F or u = 0 on F̄ .

Proof. Let v = σ−1u and x ∈ F such that v(x) = min
z∈F
{v(z)}. If v(x) > 0, then u > 0 on F . So, suppose

that v(x) ≤ 0. Then, v(x) ≤ v(y) for all y ∈ F̄ , since v ≥ 0 on δ(F ), and therefore,

0 ≤ Lq(u)(x) =
1

ν(x)

∫
F̄

c(x, y)σ(y)
(
v(x)− v(y)

)
dy + (q(x)− qσ(x))σ(x)v(x) ≤ 0,

which implies that v(x) = v(y) for all y ∈ F̄ , since F̄ is connected. Hence u = aσ, with a ∈ IR+, but
u(x) ≤ 0, then u = 0.

If we denote v = σ−1u, we first prove that v ∈ C+(F̄ ). Indeed, if x ∈ F is such that v(x) = min
z∈F
{v(z)}

it suffices to prove that v(x) ≥ 0, or equivalently that if v(x) ≤ 0 then necessarily v(x) = 0. Suppose that
v(x) ≤ 0. Then v(x) ≤ v(y) for all y ∈ F̄ and therefore,

0 ≤ Lq(u)(x) =
1

ν(x)

∫
F̄

c(x, y)σ(y)
(
v(x)− v(y)

)
dy + (q(x)− qσ(x))σ(x)v(x) ≤ 0,

which implies that v(x) = v(y) for all y ∈ F̄ such that x ∼ y since F̄ is connected. Hence u = aσ, with
a ≥ 0, but u(x) ≤ 0, then u = 0. �

Let us introduce the well-known Condenser Principle. Suppose that δ(F ) = A ∪ B, where A, B are
not empty sets and A ∩ B = ∅. Then, F̄ is called condenser with positive and negative plates A and B,
respectively, when F is connected with a medium of conductance q. When q = 0 on F , we say that F is
isolated of the surrounding media.

The Condenser Problem consists in the following boundary value problem

(7) Lq(u) = 0 on F, u = σ on A and u = 0 on B.

Of course, the above definition has sense, since Problem (7) has a unique non-null solution.

The following result follows from the application of monotonicity property to the solution of the
Condenser Problem.

Proposition 2.2 (Condenser Principle). If u ∈ C(F̄ ) is the unique solution of the Condenser Problem (7),

then 0 < u < σ on F . Moreover, it is satisfied that
∂u

∂n
F

>
∂σ

∂n
F

on A,
∂u

∂n
F

< 0 on B.

Proof. The positiveness of u follows directly from Proposition 2.1, since u = σ > 0 on A. Moreover, if
v = σ − u then Lq(v) = (q − qσ)σ ≥ 0 on F , v = 0 on A and v = σ on B. Therefore, applying again
Proposition 2.1, v > 0 on F . Finally, if x ∈ A and y ∈ B we get that u(x) = σ(x), u(y) = 0 and moreover

∂u

∂n
F

(x) =
1

ν(x)

∫
F

c(x, z)
(
σ(x)− u(z)

)
dz =

∂σ

∂n
F

(x) +
1

ν(x)

∫
F

c(x, z)
(
σ(z)− u(z)

)
dz

∂u

∂n
F

(y) =
1

ν(y)

∫
F

c(y, z)
(
u(y)− u(z)

)
dz = − 1

ν(y)

∫
F

c(y, z)u(z) dz.

The last claims follow bearing in mind that

∫
F

c(x, z)
(
σ(z)− u(z)

)
dz > 0 and

∫
F

c(y, z)u(z) dz > 0. �
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3. Resolvent kernels for the Dirichlet Problem on Finite Networks

Suppose that F ⊂ V is a proper subset and we consider for f ∈ C(F ), the Dirichlet problem

(8) Lqu = f on F and u = 0 on δ(F ).

The above problem has a unique solution that can be expressed by means of its Green kernel. A function
G : F̄ ×F −→ IR is called the Green kernel of the BVP (8) iff for all y ∈ F , the function Gy = G(·, y) is the
unique solution of

(9) Lq(Gy) = εy on F and Gy = 0 on δ(F ).

Proposition 3.1. The Green kernel verifies the following properties:

(i) ν(x)G(x, y) = ν(y)G(y, x), for all x, y ∈ F .
(ii) For any x, y ∈ F , G(x, y) > 0 and σ(y)G(x, y) ≤ σ(x)G(y, y) for any x 6= y.
(iii) For any f ∈ C(F ), the unique solution of Problem (8) is given by

u(x) =

∫
F

G(x, y)f(y) dy =
∑
y∈F

G(x, y)f(y), for any x ∈ F̄ .

Proof. (i) For any x, y ∈ F , let u = G(·, y) and v = G(·, x), then u = v = 0 on δ(F ) and from the Second
Green Identity we have that

ν(x)G(x, y) = ν(x)u(x) =

∫
F

uεxdν =

∫
F

uLqv dν =

∫
F

vLqu dν =

∫
F

vεydν = ν(y)v(y) = ν(y)G(y, x).

(ii) Let y ∈ F and consider u = Gy. Then, from the monotonicity property, u > 0 on F , since Lq(u) ≥ 0 on
F and non null.

On the other hand, if H denotes any connected component of F \ {y}, then y ∈ δ(H) and moreover
δ(H) \ {y} ⊂ δ(F ).

If δ(H) \ {y} 6= ∅, we consider v =
σ(y)

G(y, y)
Gy. Therefore,

Lq(v) = 0 on H, v(y) = σ(y) and v = 0 on δ(H) \ {y}
and applying the Condenser Principle we get that 0 < v < σ on H, and the result follows.

If δ(H) = {y}, we consider v = σ − σ(y)

G(y, y)
Gy. Therefore, Lq(v) = (q − qσ)σ on H and v(y) = 0. If

q 6= qσ on H, applying the monotonicity, we obtain that v > 0 on H and the result follows. If q = qσ on H,

then v = 0, since the Dirichlet Problem has uniqueness of solutions; that is, σ =
σ(y)

G(y, y)
Gy on H.

(iii) Let x ∈ F , then

Lq(u)(x) =

∫
F

Lq(Gy)(x)f(y) dy =

∫
F

εy(x)f(y) dy = f(x).

Moreover, for any x ∈ δ(F ), u(x) =

∫
F

G(x, y)f(y) dy = 0, since Gy(x) = 0. Therefore, u is the unique

solution of Problem (8). �
Remark: From the proof of the part (ii) of the above proposition, it follows that for any y ∈ F , the

inequality σ(y)G(x, y) ≤ σ(x)G(y, y) for any x 6= y is strict, except when δ(H) = {y} and q = qσ on H.

For h ∈ C(δ(F )) consider now the Dirichlet problem

(10) Lqu = 0 on F and u = h on δ(F ).

The above problem has a unique solution that can be expressed by means of its Poisson kernel. A
function P : F̄ × δ(F ) −→ IR is called the Poisson kernel of the BVP (10) iff for all y ∈ δ(F ), the function
Py = P (·, y) is the unique solution of

(11) Lq(Py) = 0 on F, Py(y) = 1 and Py = 0 on δ(F ) \ {y}.
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Proposition 3.2. The Poisson kernel verifies the following properties:

(i) ν(x)
∂Py
∂n

F

(x) = ν(y)
∂Px
∂n

F

(y), for all x, y ∈ δ(F ).

(ii) For any y ∈ δ(F ), 0 < σ(y)P (x, y) ≤ σ(x) for any x ∈ F and
∂Py
∂n

F

(x) < 0 for any x ∈ δ(F ), x 6= y.

(iii) For any h ∈ C(δ(F )), the unique solution of Problem (10) is given by

u(x) =

∫
δ(F )

P (x, y)h(y) dy, for any x ∈ F̄ .

Proof. (i) If for any x, y ∈ δ(F ), we consider u = Py and v = Px, then Lq(u) = Lq(v) = 0 on F and from
the Second Green Identity we have that

ν(x)
∂Py
∂n

F

(x) = ν(x)
∂u

∂n
F

(x) =

∫
δ(F )

∂u

∂n
F

Pxdν =

∫
δ(F )

∂v

∂n
F

Pydν = ν(y)
∂v

∂n
F

(y) = ν(y)
∂Px
∂n

F

(y).

(ii) Let y ∈ δ(F ) and consider u = Py. Then, from the monotonicity property, u > 0 on F , since u(y) > 0.

On the other hand, if δ(F ) \ {y} 6= ∅, we consider v = σ(y)Py. Therefore,

Lq(v) = 0 on F, v(y) = σ(y) and v = 0 on δ(F ) \ {y}

and applying the Condenser Principle we get that 0 < v < σ on F ,
∂v

∂n
F

(x) < 0 for any x ∈ δ(F ) such that

x 6= y and the results follow.

If δ(F ) = {y}, we consider v = σ−σ(y)Py. Therefore, Lq(v) = (q− qσ)σ on F and v(y) = 0. If q 6= qσ
on F , applying the monotonicity, we obtain that v > 0 on F and the result follows. If q = qσ on F , then
v = 0, since the Dirichlet Problem has uniqueness of solutions; that is, σ = σ(y)Py on F .

(iii) Let x ∈ F , then

Lq(u)(x) =

∫
δ(F )

Lq(Py)(x)h(y) dy = 0.

Moreover, for any x ∈ δ(F ), u(x) =

∫
δ(F )

P (x, y)h(y) dy = h(x), since Py = εy. Therefore, u is the unique

solution of Problem (10). �
Remark: From the proof of the part (ii) of the above proposition, it follows that for any y ∈ δ(F ),

the inequality σ(y)P (x, y) ≤ σ(x) for any x ∈ F is strict, except when δ(F ) = {y} and q = qσ on F .

Given f ∈ δ(F ), we know that u is the solution of Problem (10) iff u = v + h where v is the unique
solution of Problem (8) with data f = −L(h). This equivalence leads us to obtain a relation between Green
and Poisson kernels.

Proposition 3.3. For any x ∈ F̄ and any y ∈ δ(F ) the following identity holds:

P (x, y) = εy(x)− ν(y)

ν(x)

∂Gx
∂n

F

(y).

Proof. Let y ∈ δ(F ) and consider u = Py. Then u = εy+v, where v is the unique solution of Lq(v) = −L(εy)
on F and v = 0 on δ(F ). From part (iii) of Proposition (9) and applying the Second Green Identity, we get
that if x ∈ F ,

v(x) = −
∫
F

G(x, z)L(εy)(z) dz = − 1

ν(x)

∫
F

Gx(z)L(εy)(z) dν(z) = − 1

ν(x)

∫
F

L(Gx)(z)εy(z) dν(z)

+
1

ν(x)

∫
δ(F )

∂εy
∂n

F

(z)Gx(z) dν(z)− 1

ν(x)

∫
δ(F )

∂Gx
∂n

F

(z)εy(z) dν(z) = −ν(y)

ν(x)

∂Gx
∂n

F

(y). �
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4. The Kernel of the Dirichlet to Neumann Map

The map Λ: C(δ(F )) −→ C(δ(F )) that assigns to any h ∈ C(δ(F )), the function Λ(h) =
∂uh
∂n

F

, where

uh is the unique solution of Problem (10) with data h, is called Dirichlet-to-Neumann map. The following
result is a straightforward consequence of the Green Identities.

Proposition 4.1. The Dirichlet-to-Neumann map is a self–adjoint operator and its associated quadratic
form is given by ∫

δ(F )

hΛ(h)dν = Q(uh).

In particular, if
∂σ

∂n
F

≥ 0 on δ(F ), then the Dirichlet-to-Neumann map is positive semi–definite and positive

definite when either q 6= qσ on F or
∂σ

∂n
F

6= 0 on δ(F ).

Proof. Given f, h ∈ C(δ(F )), by applying the Second Green Identity we obtain that∫
δ(F )

fΛ(h) dν =

∫
δ(F )

f
∂uh
∂n

F

dν =

∫
δ(F )

h
∂uf
∂n

F

dν =

∫
δ(F )

hΛ(f) dν

and hence Λ is a self–adjoint operator. On the other hand, from the First Green Identity we get∫
δ(F )

hΛ(h) dν =

∫
δ(F )

uh
∂uh
∂n

F

dν =
1

2

∫
F̄×F̄

c
F

(x, y)
(
uh(x)− uh(y)

)2
dxdy +

∫
F

qu2
h dν = Q(uh)

and the last claim follows from Proposition 1.1. �

Proposition 4.2. Given h ∈ C(δ(F )), then for any x ∈ δ(F ) we get that

Λ(h)(x) =

∫
δ(F )

∂Py
∂n

F

(x)h(y) dy;

that is, the kernel of the Dirichlet-to-Neumann is K(x, y) =
∂Py
∂n

F

(x). In particular K(x, y) < 0 for x, y ∈

δ(F ) such that x 6= y. In addition, if
∂σ

∂n
F

≥ 0 on δ(F ), then K(y, y) > 0 for any y ∈ δ(F ).

Proof. From Proposition 3.2, we get that for any x ∈ F̄ , uh(x) =

∫
δ(F )

P (z, y)h(y) dy and hence if x ∈ δ(F ),

then

Λ(h)(x) =
∂uh
∂n

F

(x) =

∫
δ(F )

∂Py
∂n

F

(x)h(y) dy. �
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